

The new FRL units AIRPLUS series represents the evolution of the well known and consolidated 1700 series.

The main features are increased performances, reliability, easy and fast assembly and the introduction of the latest technical features. With the exception of the air intake module and the pressure switch module all elements are available in two configurations: with technopolimer connections (IN and OUT), (T series), or with metal threaded inserts, (N series). Bowls made of transparent polycarbonate (PC) are fitted with a bowl protection guard which is assembled on the body via a quick coupling mechanism provided with a safety button. The filter, available with three filtration grades (5µm, 20µm and 50µm) is fitted as standard with a drain mechanism which can be operated manually or semiautomatically. On request is available the auto-drain mechanism. The regulator is based on the rolling diaphragm technology with low hysteresis and the system is balanced. The unit can be fitted with integrated flush mounting pressure gauge (0 to 12 bar range). 4 pressure ranges are available going from 0 to 12 bar and the regulating knob can be blocked in position simply by pressing it down. A dedicated version is available for battery mounting, up to a maximum of 6 units. The lubricator is based on the Venturi principle and the oil quantity is regulated via the adjusting screw positioned don the transparent polycarbonate (PC) regulating dome which also ensure clear visibility of the oil flow and regulation. The oil suction pipe is fitted as standard with a sintered filter which ensures that any contaminant that should be present in the oil will reach the down stream circuit. Shoot off valve is available in two versions, one manually operated and one solenoid operated. In both cases the unit is fitted with a threaded connection for depressurising the downstream circuit. On the manually operated version, in the lock position, it is possible to fit up to three locks in order to prevent the accidental pressurization of the pneumatic circuit avoiding accidents or damages. The solenoid operated version is available with a 15mm or with a 22mm solenoid valve. The soft start valve ensure a progressive pressurization of the down stream circuit avoiding sudden pressure surges which could be dangerous for the devices fitted on the down stream circuit. The filling time can be easily adjusted via a built in flow regulator. The full flow rate is allowed only once the down stream pressure has reached 50% of the value of the inlet pressure. The pressure switch module which can be set between 2 and 10 bar and the air intake module complete the range.

The elements are joint together via dedicated quick coupling technopolimer flanges which allows for the units to be panel mounted moreover ensure the possibility to replace any component without disassembling the FRL group from its position.

90° mounting brackets and standard gauges are also available.

Instruction for installation and operation

The FRL unit must be installed as close as possible to the application. The air flow direction must follow the directions indicated on the single units in correspondence of the threaded connections. (IN and OUT)

Units provided with bowl must be mounted vertically with the bawl facing down. Single units or groups can be panel mounted via the Y type flanges, regulators and filter-regulators can be mounted via the 90° zinc plated steel bracket. In order to mount the 90° bracket it is necessary to remove the regulating knob and then the locking ring before positioning the bracket. All units must be operated according to the specified pressure and temperature ranges; fittings must be mounted without exciding the maximum torque allowed. Ensure that the units cover plates are in position before pressure is applied. The cover plates are needed to lock in position the top part of the unit.

The condense level in filer and filter-regulators bowls must never exceed the maximum level indicated on the bowls. With manual or semi automatic drain the condense can be discharged via a 6/4mm tube directly connected to the drain tap. On the pressure regulator the pressure value must always set wile pressure is rising and ideally the unit pressure range should be chosen based on the pressure value to be regulated. Lubricators must be filled with class FD22 and HG32 oils. Ensure, both on the inlet and on the outlet, that the flow rate is above the minimum flow rate required to operate the unit. Below this value the units does not operate. The oil quantity can be regulated via the regulating screw on the transparent polycarbonate dome through which it is also clearly visible the oil flow. A drop every 300-600 litres should be allowed.

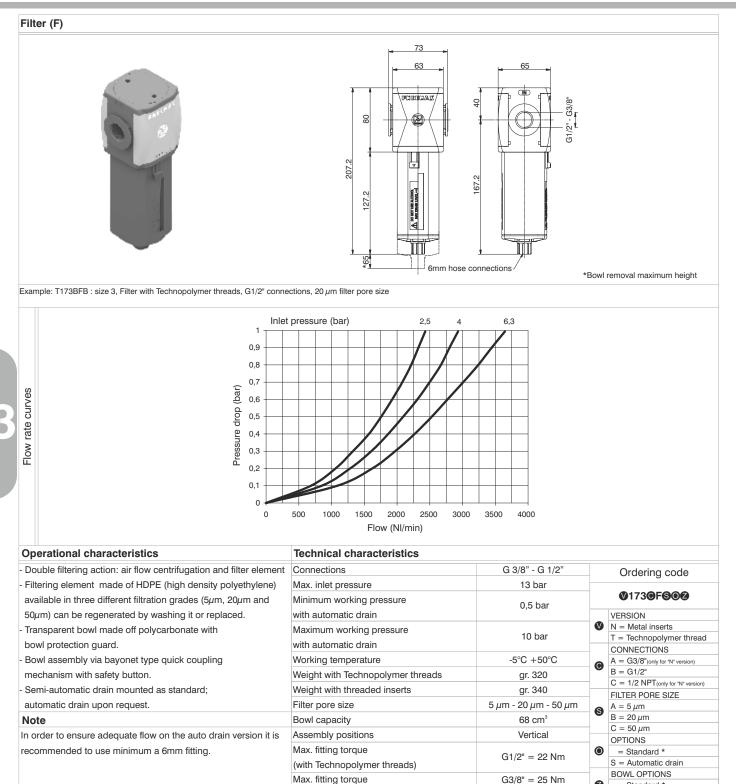
The oil can be re-filled while the pneumatic circuit is pressurized thanks to the exhaust valve which is built in the refill plug and allows for the bowl to be depressurized and the oil refill directly form in the bowl or from the plug. The manual shot off valve needs, to be operated, a push and turn action (clockwise) in order to close it and discharge the down stream circuit it is necessary to turn anti clock wise the knob. The soft start valve is used to slowly and progressively pressurize the down stream circuit, the time needed to do so can be set by means of the built in flow regulator. The soft start valve on its own does not allow for the down stream circuit to be discharged, in order to do so it is necessary to combine it with a shot off valve (to be mounted upstream).

Maintenance

For any maintenance which requires the removal of the top plugs/ supports from the body it is necessary to preventively remove the sides cover plates. If the top plugs/supports are removed with the sides plates still in their position the unit could be permanently damaged.

Bowls, plugs and supports are assembled with a bayonet type mechanism. In order to remove them rotate anti clockwise until the mechanical stop is reached and than remove from the body (for the bowls firstly press down the green safety button). Bowls and transparent parts can be cleaned with water and neutral soap. Do not use solvents or alcohol.

Filtering elements (from filters and filter regulators) made of HDPE can be regenerated by washing and blowing them. In order to remove them it is necessary to remove the bowl unscrew the filter element and replace it with a new one or clean it. The oil can be re-filled while the pneumatic circuit is pressurized thanks to the exhaust valve which is built in the refill plug and allows for the bowl to be depressurized. In order to be able to unmount the bowl it is necessary unscrew the refill plug positioned near the oil dome, once this operation has been carried out it is possible to remove the bowl to re fill it or to refill from the refill plug. Refilling directly the bowl is suggested.


Should the pressure regulator not perform properly or should present a constant leackage from the relieving replaced the diaphragm by unloading completely the regulating spring before removing the regulation support. Any other maintenance operation, in consideration of the complexity of the assembly, and the need of a through test according to the Pneumax spa specification, should be carried out by the manufacturer.

Fittings maximum recommended torque applicable

THREAD	Technopolymer version (T)	Metal version (N)
G1/8"	4 Nm	15 Nm
G1/4"	9 Nm	20 Nm
G3/8"	16 Nm	25 Nm
G1/2"	22 Nm	30 Nm

3

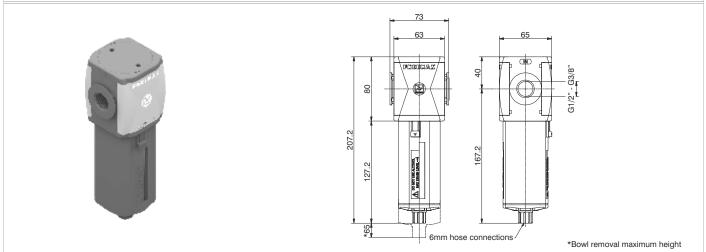
(with threaded inserts)

* no additional letter required

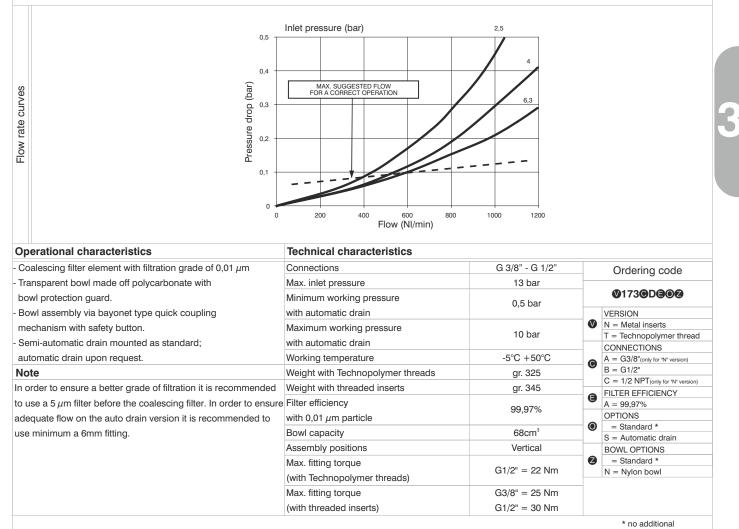
= Standard *

N = Nylon bowl

0


G1/2" = 30 Nm

DOMINGA INDUSTRY SERVICE

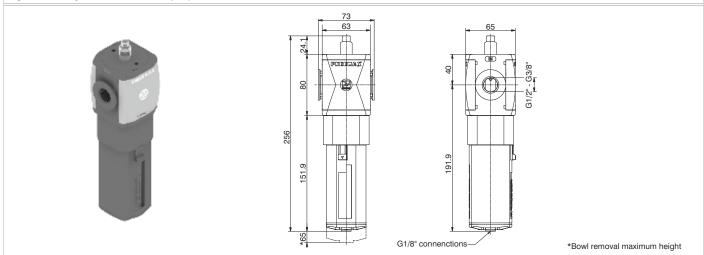

Series Airplus Size 3

DIFUNA

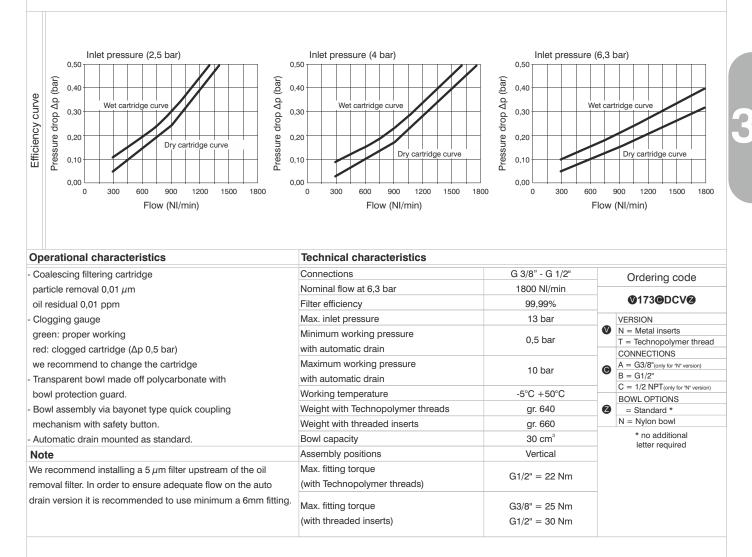
Coalescing filter (D)

Example : T173BDA : Coalescing size 3, Filter with Technopolymer threads, G1/2" connections, filter efficency 99,97%

letter required


Oil removal filter (DB) 73 63 65 80 217.6 53.5 13.5 ß G1/8" connenctions *Bowl removal maximum height Example : T173BDBV : size 3 Oil removal filter, with clogging gauge, Technopolymer threads, G1/2" connections. Inlet pressure (2,5 bar) Inlet pressure (4 bar) Inlet pressure (6,3 bar) 0.50 0.50 0.50 (bar) Pressure drop ∆p (bar) 05'0 00'0 01'0 05'0 Pressure drop Δp (bar) 0,40 0,40 Efficiency curve Wet cartridge curv Pressure drop Δp 0,30 0,30 ۱۸/c Wet cartride 0,20 0,20 Drv cartridge curve 0,10 0,10 Dry rtridge cu rtridge curve 0,00 0,00 0,00 0 100 200 300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 600 700 800 900 1000 1100 Flow (NI/min) Flow (NI/min) Flow (NI/min) **Operational characteristics Technical characteristics** G 3/8" - G 1/2" Coalescing filtering cartridge Connections Ordering code Nominal flow at 6,3 bar 1100 NI/min particle removal 0,01 μ m 01730DBV0 Filter efficiency 99,99% oil residual 0,01 ppm Clogging gauge Max. inlet pressure 13 bar VERSION V N = Metal inserts green: proper working Minimum working pressure 0,5 bar T = Technopolymer thread red: clogged cartridge (Δp 0,5 bar) with automatic drain CONNECTIONS we recommend to change the cartridge Maximum working pressure A = G3/8"(only for "N" version 10 bar C B = G1/2"with automatic drain Transparent bowl made off polycarbonate with C = 1/2 NPT(only for "N" version) -5°C +50°C bowl protection guard. Working temperature BOWL OPTIONS Weight with Technopolymer threads Bowl assembly via bayonet type quick coupling gr. 440 Z = Standard * N = Nylon bowl mechanism with safety button. Weight with threaded inserts gr. 460 * no additional Automatic drain mounted as standard. Bowl capacity 30 cm³ letter required Note Assembly positions Vertical We recommend installing a 5 μ m filter upstream of the oil Max. fitting torque G1/2" = 22 Nm (with Technopolymer threads) removal filter. In order to ensure adequate flow on the auto drain version it is recommended to use minimum a 6mm fitting. Max. fitting torque G3/8" = 25 Nm

(with threaded inserts)



G1/2" = 30 Nm

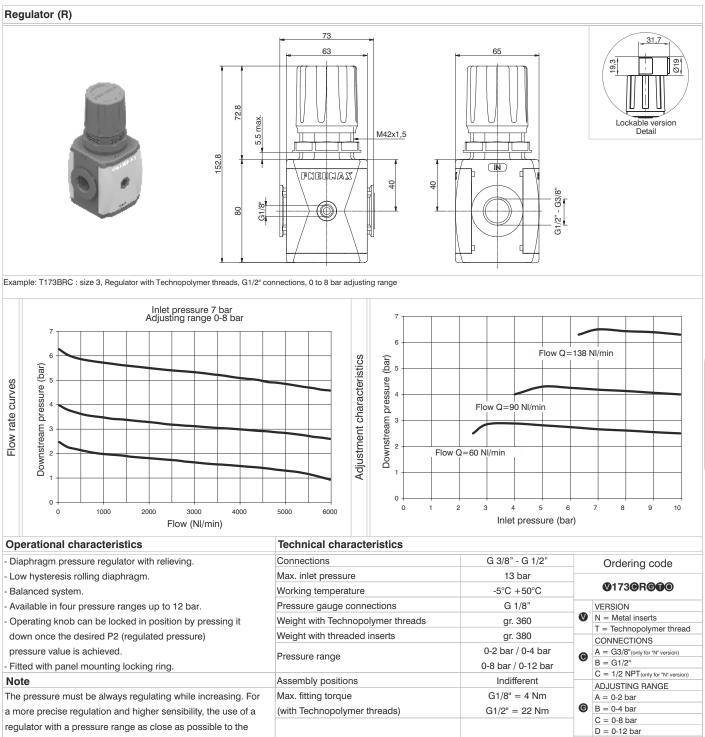
High efficiency oil removal filter (DC)

Example: T173BDCV : size 3 High efficiency oil removal filter, with clogging gauge, Technopolymer threads, G1/2" connections.

Carbon filter (DD) 73 63 9 80 ĥ 207.2 67.2 DO NOT USE ALCOHOL. 127. Ψ *65 *Bowl removal maximum height Example : T173BDD : size 3 Carbon filter, Technopolymer threads, G1/2" connections. Inlet pressure (2,5 bar) Inlet pressure (4 bar) Inlet pressure (6,3 bar) 0,30 0,30 0,3 0.2 0.25 0.25 Content of the service of the servi Pressure drop Δp (bar) (bar) Efficiency curve 0,20 0,20 _ D Pressure drop 0,15 0,15 0,10 0,10 0,05 0,05 0,05 0,00 0,00 0,00 0 100 200 300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 600 700 800 900 1000 1100 Flow (NI/min) Flow (NI/min) Flow (NI/min) **Operational characteristics Technical characteristics** G 3/8" - G 1/2" Active carbon cartridge with built in particulate filter. Connections Ordering code Nominal flow at 6,3 bar Used to remove oil vapours, hydrocarbons, odours and 1100 NI/min @173@DD@ Cartridge life 2000 hours particles coming from the compressed air lines or gasses in Max. inlet pressure industrial applications. Oil residue up to <0,003 ppm 13 bar VERSION V N = Metal inserts -5°C +50°C (max imput aereosol 0.01ppm). Working temperature T = Technopolymer thread Weight with Technopolymer threads gr. 440 Innovative filtering technology; high absorption capacity, CONNECTIONS Weight with threaded inserts with low differential pressure. gr. 460 A = G3/8"(only for "N" version) C B = G1/2"Bowl capacity 30 cm³ Transparent bowl made off polycarbonate with C = 1/2 NPT(only for "N" version)Assembly positions bowl protection guard. Vertical BOWL OPTIONS Bowl assembly via bayonet type quick coupling Max. fitting torque Z = Standard * G1/2" = 22 Nm N = Nylon bowl mechanism with safety button. (with Technopolymer threads) * no additional Semi-automatic drain mounted as standard. letter required Note

Max. fitting torque

(with threaded inserts)


A 5 micron filter followed by a coalescing filter must be installed before the Oil removal filter in order to ensure the correct functionality of the unit and to safeguard the life of the active carbon cartridge. It is also necessary to preventively replace the cartridges at fixed intervals.

G3/8" = 25 Nm

G1/2" = 30 Nm

INDUSTRY SERVICE Savanorių pr. 187- 4 korp., LT-02300 Vilnius, Lietuva, tel.: +370 5 2322231, faks. + 370 5 2648229

DIFTIN

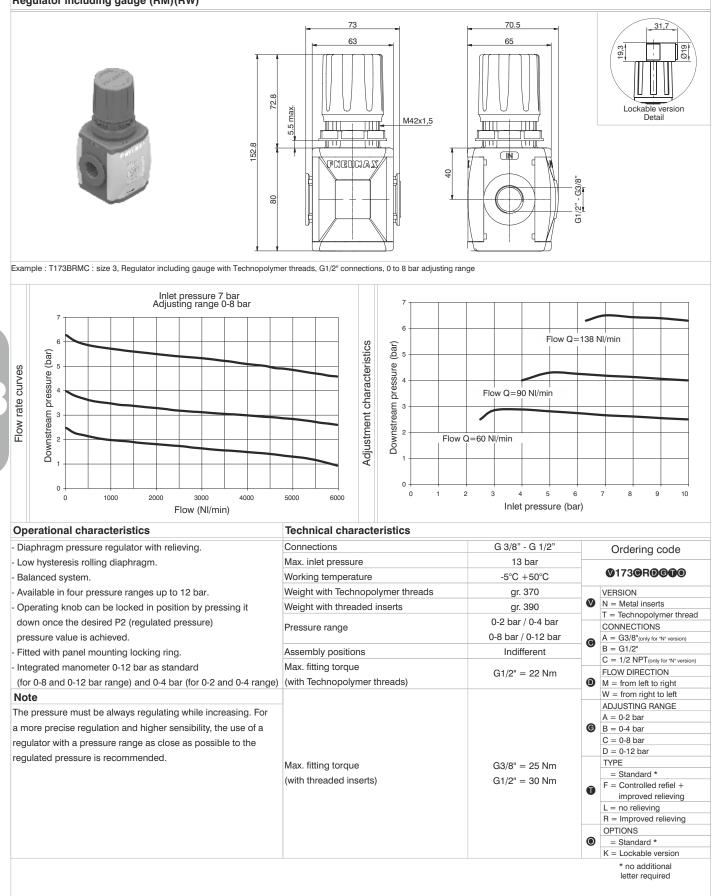
regulated pressure is recommended.

Max. fitting torque G3/8" = 25 Nm (with threaded inserts) G1/2" = 30 Nm

TYPE = Standard * F = Controlled refiel +

improved relieving

L = no relieving R = Improved relieving OPTIONS


= Standard * K = Lockable version * no additional letter required

Ø

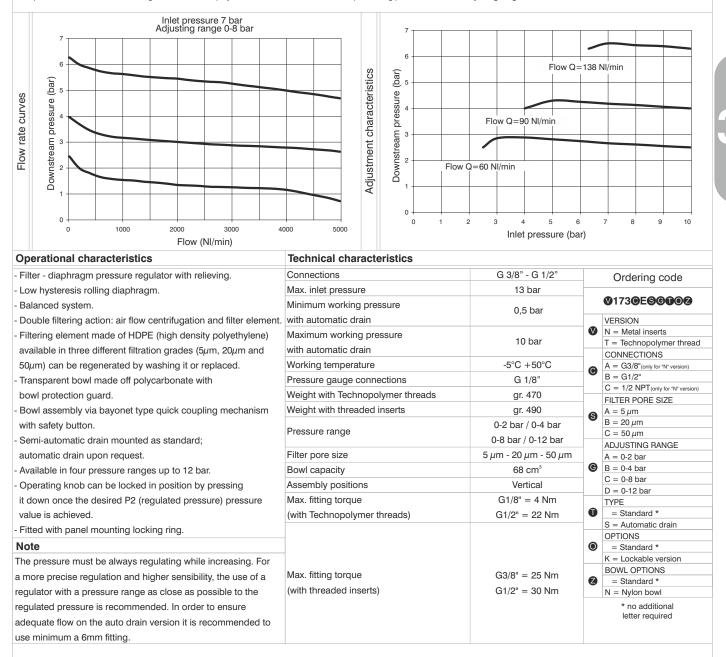
0

Regulator including gauge (RM)(RW)

Series Airplus Size 3

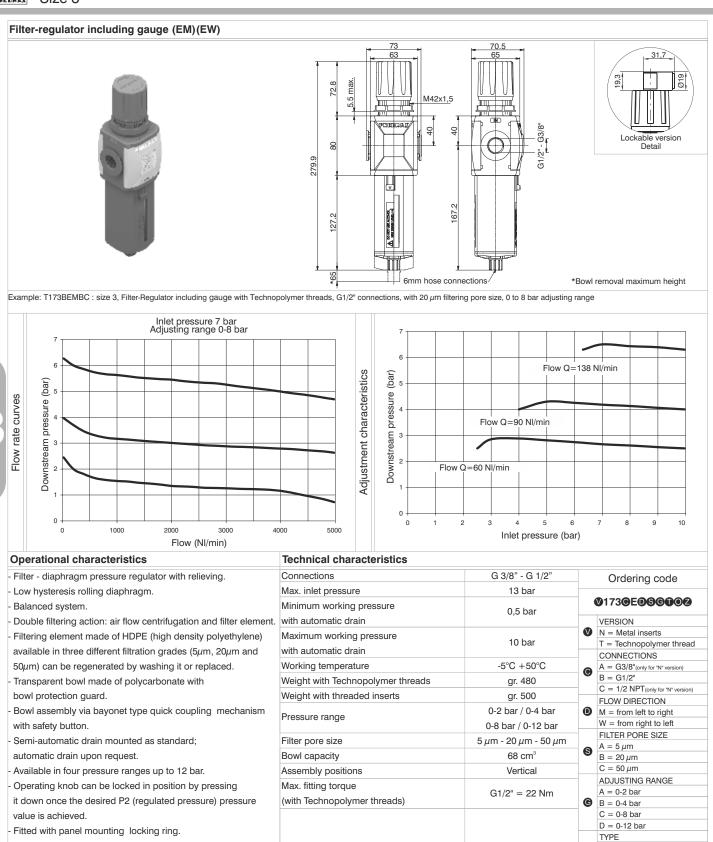
*Bowl removal maximum height

DNFIM


Filter-Regulator (E) 73 65 31,7 63 019 019 19,3 5.5 max 72.8 M42x1,5 G3/8 Lockable version ā 8 Dotai 5 Ň 279.9 5 167.2

6mm hose connections

127.2


*65

Example : T173BEBC : size 3, Filter-regulator with Technopolymer threads, G1/2" connections, 20 µm filtering pore size, 0 to 8 bar adjusting range

- Integrated manometer 0-12 bar as standard

(for 0-8 and 0-12 bar range) and 0-4 bar (for 0-2 and 0-4 range) Note

Note The pressure must be always regulating while increasing. For a more precise regulation and higher sensibility, the use of a regulator with a pressure range as close as possible to the regulated pressure is recommended. In order to ensure adequate flow on the auto drain version it is recommended to use minimum a 6mm fitting.

DOMINGA

INDUSTRY SERVICE Savanorių pr. 187- 4 korp., LT-02300 Vilnius, Lietuva, tel.: +370 5 2322231, faks. + 370 5 2648229

O

0

0

G3/8" = 25 Nm

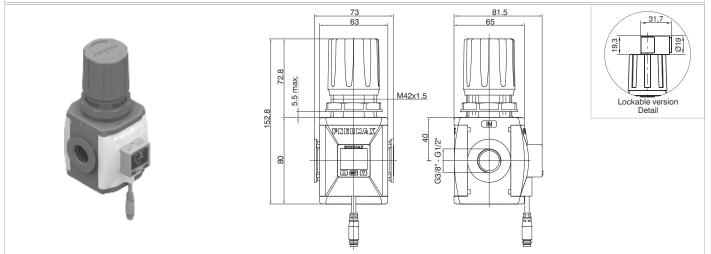
G1/2" = 30 Nm

= Standard * S = Automatic drain

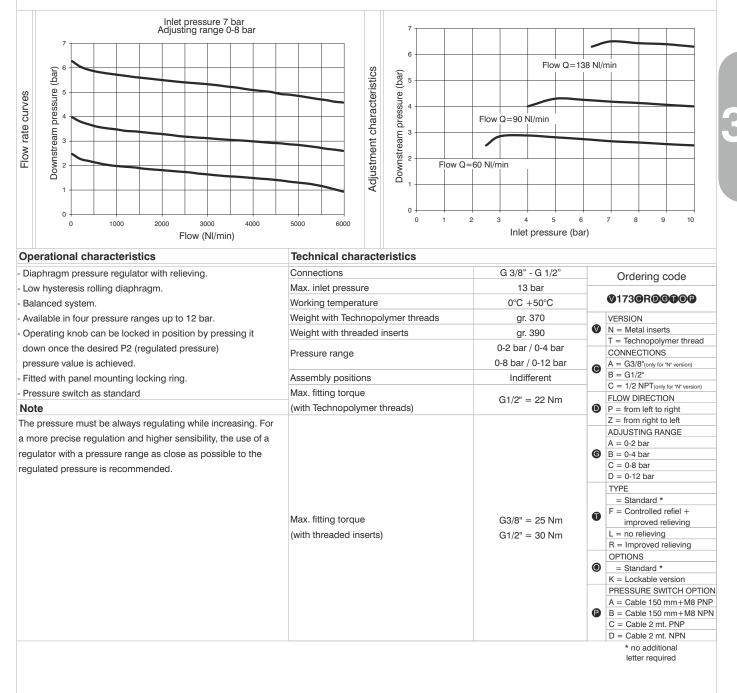
= Standard *

BOWL OPTIONS

= Standard *


N = Nylon bowl

K = Lockable version


* no additional letter required

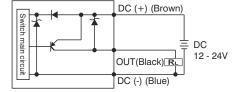
OPTIONS

Regulator with pressure switch (RP)(RZ)


Example : T173BRPCA : size 3, Regulator with Technopolymer threads, G1/2" connections, 0 to 8 bar adjusting range, with pressure switch with M8 connector PNP

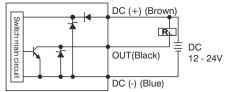
Filter regulator with pressure switch (EP)(EZ)

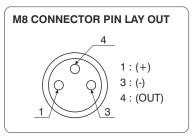
					6											-
			9	ဂ္ပ	Downstream pressure (bar)					Flo	w Q=13	38 NI/n	nin			
Downstream pressure (bar)			;+ ;;	Istic) e [
Surger State Sta			1	iter	nsse											
w w w w w w w w w w w w w w w w w w w				liac	4 Pre	1		Elow	Q=90	W/min						1
	Adjustment characteristics Downstream pressure (ba				sam s			FIOW	Q_90							
			+	ü	Istre			/								
				Ĕ	LMO 2		Flow O	=60 NI/n								-
				snĺ	Õ											
1			4	Ad	1											
					0											
0					-	0	1	2	3	4	5 6	1 6	7	8	9 1	-1 10
0 1000 2000 3000 Flow (NI/min)	4000	500	0						Inle	t press	ure (ba	r)				
	Teebr		boro	oto	ristics											
perational characteristics			nara	cie	eristics	•			0.0/01	0.14	0"					
ilter - diaphragm pressure regulator with relieving.	Conne									- G 1/2	2"	_	Ord	ering	code	
ow hysteresis rolling diaphragm.		nlet pres							13	8 bar		01730E0800002				00
Balanced system.		um worl	• •		sure				0,	5 bar						_
Double filtering action: air flow centrifugation and filter element						10 bar			VERSION V = Metal inserts							
iltering element made of HDPE (high density polyethylene)	Maximum working pressure								-	T = Technopolymer thread						
vailable in three different filtration grades (5 μ m, 20 μ m and	with automatic drain							CONNECTIONS								
0 μ m) can be regenerated by washing it or replaced.		Working temperature				0°C +50°C			$\Theta = \frac{A = G3/8"(only for "N" version)}{B = G1/2"}$							
ransparent bowl made off polycarbonate with	Weight with Technopolymer threads				gr. 480			C = 1/2 NPT(only for "N" version)			ion)					
owl protection guard.	Weight with threaded inserts					gr. 500			FLOW DIRECTION							
Bowl assembly via bayonet type quick coupling mechanism	Pressure range				0-2 bar / 0-4 bar			$\mathbf{D} = \text{from left to right}$								
vith safety button.					0-8 bar / 0-12 bar			Z = from right to left FILTER PORE SIZE								
Semi-automatic drain mounted as standard;	Filter pore size					5 μm - 20 μm - 50 μm			A = 5 μ m							
utomatic drain upon request	Bowl capacity					68 cm ³				$B = 20 \mu m$						
vailable in four pressure ranges up to 12 bar.	Assembly positions					Vertical			C = 50 μm ADJUSTING RANGE							
Operating knob can be locked in position by pressing	Max. fitting torque						G1/2" = 22 Nm				A = 0.2 bar					
down once the desired P2 (regulated pressure) pressure	(with Technopolymer threads)								G	G B = 0-4 bar						
alue is achieved.											C = 0.8 bar $D = 0.12 bar$					
itted with panel mounting locking ring.										TYPE						
Pressure switch as standard												= Standard *				
ote													S = Aut		drain	
ne pressure must be always regulating while increasing. For	Max. fitting torque (with threaded inserts)					G3/8" = 25 Nm G1/2" = 30 Nm				OPTIONS = Standard *						
more precise regulation and higher sensibility, the use of a									-	K = Loo	kable v					
gulator with a pressure range as close as possible to the												ITCH OF				
gulated pressure is recommended. In order to ensure										e	A = Cable 150 mm+M8 B = Cable 150 mm+M8					
dequate flow on the auto drain version it is recommended to												-	C = Ca	ble 2 mt	. PNP	
use minimum a 6mm fitting.													D = Ca			
-												2	BOWL (OPTION ndard *	S	
												9	N = Ny			

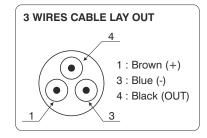


CHARACTERISTICS

- 3 color digital LCD display, easy readout
- 4 units of measurement for pressure indication
- PNP and NPN output
 N.O. and N.C. output contact
- Not available individually, but only with a Regulator or a Filter-regulator

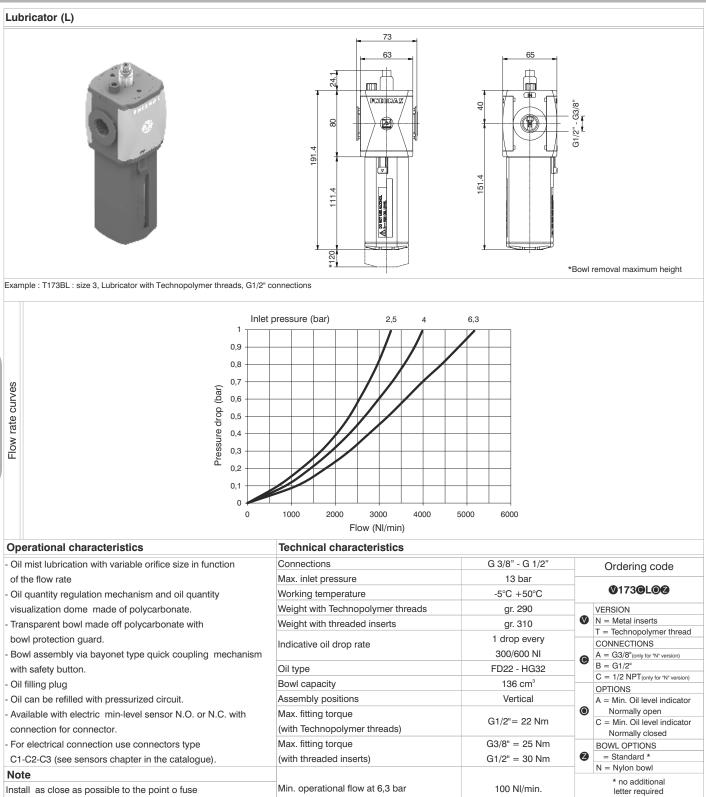

OUTPUT CIRCUIT WIRING DIAGRAMS


PNP output



NPN output

Connector

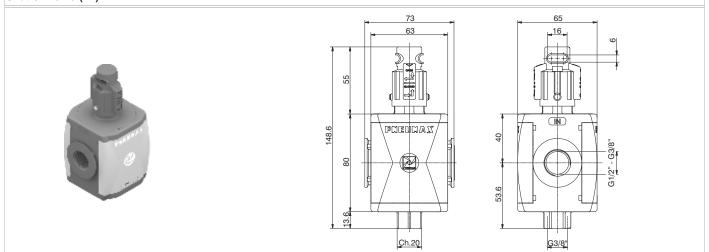

Cable ordering code

MCH1	cable 3 wires I=2,5m with M8 connector
MCH2	cable 3 wires I=5m with M8 connector
MCH3	cable 3 wires I=10m with M8 connector

TECHNICAL CHARACTERISTICS					
Adjusting range	0 - 10 bar / 0 - 1MPa				
Max. inlet pressure	15 bar / 1,5 MPa				
Fluid	Filtered and dehumidified air				
Display unit of measurement	MPa - kgf/cm ² - bar - psi				
Supply voltage	12 - 24 VDC				
Current consumption	≤40mA (without load)				
Digital output type	NPN - PNP				
Type of contact	Normally Open - Normally Closed				
Max. load current	125 mA				
Digital output activation mode	single threshold with fixed hysteresis - window with fixed hysteresis - window without hysteresis				
Digital output activation time	0.05s - 0.25s - 0.5s - 1s - 2s - 3s (selections for chattering-proof function)				
Display characteristics	Double 3 1/2 digit display Digital output status indication Three-pushbuttons touchpad				
Indicator accuracy	≤±2% F.S. ± 1 digit				
Protection grade	IP 40				
Temperature	0 - 50 °C				
Cable section	3 x 0,129mm ² , Ø4 mm, PVC				

UAB "Domingos prekyba" www.dominga.lt/eshop email: info@dominga.lt INDUSTRY SERVICE Savanorių pr. 187- 4 korp., LT-02300 Vilnius, Lietuva, tel.: +370 5 2322231, faks. + 370 5 2648229

Install as close as possible to the point o fuse Do not use alcohol, deterging oils or solvents.



Series Airplus . Size 3

PNEUMAX

3

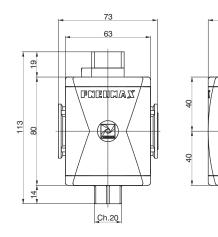
Shut-off valve (VL)

Example: T173BVL : size 3, Shut-off valve with Technopolymer threads, G1/2" connections

Operational characteristics	Technical characteristics		
- Manual operated 3 ways poppet valve.	Connections	G 3/8" - G 1/2"	Ordering code
- Double handle action for valve opening: pushing and	Max. inlet pressure	13 bar	
rotating (clockwise).	Discharge connection	G3/8"	Ø 173 @ VL
- The valve can be closed and the down stream circuit	Working temperature	-5°C +50°C	VERSION
depressurized by rotating anticlockwise the knob.	Weight with Technopolymer threads	gr. 230	N = Metal inserts
- Knob lockable with three padlocks.	Weight with threaded inserts	gr. 250	T = Technopolymer thread CONNECTIONS
	Assembly positions	Indifferent	A = G3/8"(only for "N" version)
	Handle opening and closing angle	90°	B = G1/2"
	Max. fitting torque	G1/2" = 22 Nm	C = 1/2 NPT(only for "N" version)
	(with Technopolymer threads)	G1/2 = 22 Nm	
	Max. fitting torque	G3/8" = 25 Nm	_
	(with threaded inserts)	G1/2" = 30 Nm	
	Nominal flow rate	2000 NII/	_
	at 6 bar with $\Delta p = 1$	3600 NI/min.	
	Exhaust nominal flow rate	4500 NU/min	1
	at 6 bar with $\Delta p = 1$	1500 NI/min.	

65

(¢


G3/8"

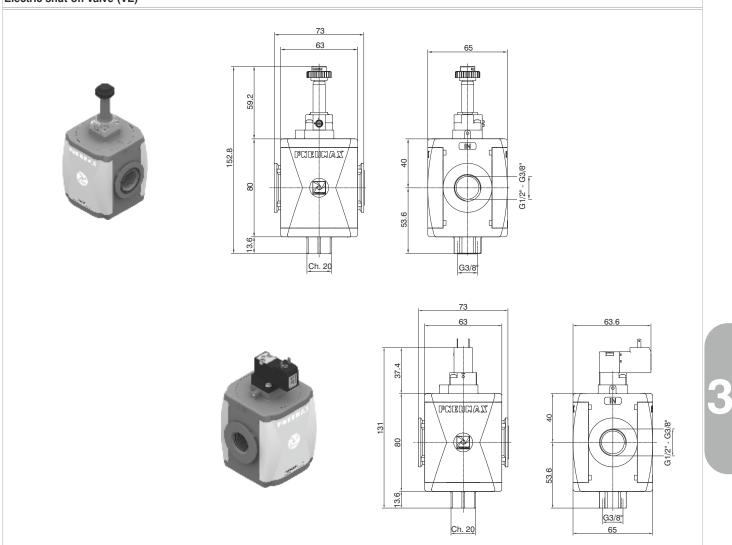
G3/8" - G1/2"

<u>G1/8"</u>

Pneumatic shut-off valve (VP)

Example: T173BVP : size 3, Pneumatic shut-off valve with Technopolymer threads, G1/2" connections

Operational characteristics	Technical characteristics						
- Pneumatic operated 3 ways poppet valve.	Connections	G 3/8" - G 1/2"	Ordering code				
- When the pneumatic signal is removed the	Discharge connection	G3/8"					
valves exhaust the pneumatic circuit	Pilot port size	G1/8"	© 173 © VP				
	Working temperature	-5°C +50°C	VERSION				
	Weight with technopolymer threads	gr. 254	N = Metal inserts				
	Weight with threaded inserts	gr. 270	T = Technopolymer thread CONNECTIONS				
	Assembly positions	Indifferent	A = G3/8"(only for "N" version)				
	Min. pressure working	2,5 bar	B = G1/2"				
	Max. pressure working	10 bar	C = 1/2 NPT(only for "N" version)				
	Max. fitting torque	01/01 00 Nor					
	(with Technopolymer threads)	G1/2" = 22 Nm					
	Max. fitting torque	G3/8" = 25 Nm					
	(with threaded inserts)	G1/2" = 30 Nm					
	Nominal flow rate		_				
	at 6 bar with $\Delta p = 1$	3600 NI/min.					
	Exhaust nominal flow rate						
	at 6 bar with $\Delta p = 1$	1500 NI/min.					


3.204

Electric shut-off valve (VE)

PREURAX

Example : T173BVEB2 : size 3, Electric shut-off valve, with M2 Pilot without coil, Technopolymer threads, G1/2" connections

Operational characteristics	Technical characteristics	Technical characteristics					
Solenoid operated 3 ways poppet valve.	Supply and operating connections	G 3/8" - G 1/2"	Ordering code				
The model fitted with 15 mm pilots uses pilots series	Discharge connections	G 3/8"	5				
N33_0A and N33_0E (1 Watt)	Working temperature	-5°C +50°C	Ø 173 © VE Ø				
	Weight with Technopolymer threads	290 g	VERSION				
	Weight with threaded inserts	310 g	N = Metal inserts				
	Assembly positions	Indifferent	T = Technopolymer threa				
	Min. Pressure working	2,5 bar	A = G3/8"(only for "N" version)				
	Ŭ	, ,					
	Max. Pressure working	10 bar	B = G1/2" $C = 1/2 NPT(only for "N" version)$				
	Max. fitting torque	G1/2" = 22 Nm	15 mm COIL VOLTAGE				
	(with Technopolymer threads)		A4 = 12 V DC				
	Max. fitting torque	G3/8" = 30 Nm	A5 = 24 V DC A6 = 24 V AC (50-60 Hz				
	(with threaded inserts)	G1/2" = 25 Nm					
	Nominal flow rate	01/2 - 25 1011	A7 = 110 V AC (50-60 H				
		3600 NI/min.	A8 = 230 V AC (50-60 H A9 = 24 V DC (1 Watt) 22 mm COIL VOLTAGE				
	at 6 bar with ∆p=1						
			B2 = Without coil				
			M2 mechanic				
			B4 - 12 V DC				
			B5 = 24 V DC				
			B6 = 24 V AC (50-60 Hz)				
	Exhaust nominal flow rate		B7 = 110 V AC (50-60 H				
		1500 NI/min.	B8 = 230 V AC (50-60 H				
	at 6 bar with ∆p=1		B9 = 24 V DC (2 Watt)				
			30 mm COIL VOLTAGE				
			C5 = 24 V DC				
			C6 = 24 V AC (50-60 Hz				
			C7 = 110 V AC (50-60 H				
			C8 = 230 V AC (50-60 H				
			C9 = 24 V DC (2 Watt)				

