

Servoproportional 2-way cartridges high response

digital, with two position transducers, ISO 7368 sizes from 32 to 100, rugged design **Available only on request**

LIQZH-LEB, LIQZH-LES

High response 2-way servoproportional cartridge valves specifically designed for high flow applications requiring maximum dynamics and accurate control.

Typical applications are die casting and fast forging presses.

They are equipped with two LVDT position transducers for best dynamics in not compensated flow regulations.

pensated flow regulations.
The cartridge execution for blocks installation grants high flow capabilities and minimized pressure drops.

The integral digital electronic driver performs the valve's hydraulic regulation according to the reference signal and assures valve-to-valve interchangeability thanks to the factory presetting.

High response valves are available in LEB basic execution with analog reference signals and USB port for software functional parameters setting or in LES full execution which includes also optional fieldbus interfaces for functional parameters setting, reference signals and real-time diagnostics

sizes from **32** to **100**, Max flow: **1800** to **16.000 I/min** Max pressure: **420 bar**

1 MODEL CODE

Seals material, see sect. 4, 5:

- = NBR
PE = FKM
BT = HNBR

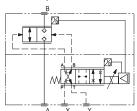
Series number

Electronic options, see sections 9
I = current reference input and monitor 4÷20 mA (omit for standard voltage reference input and monitor ±10 V)
F = fault signal
Q = enable signal
Z = double power supply (2), enable, fault and monitor signals (12 pin connector)

**

Poppet type - regulating characteristics:

L4 = linear



Configuration: 2 = 2 way

functional symbol

2

L4

simplified symbol

Valve size, see section 4

 size
 32
 40
 50

 I/min
 800
 1200
 2000

 size
 63
 80
 100

 I/min
 3000
 4500
 7200

(1) LEB available only in version SN-NP

Nominal flow (I/min) at Δp 5 bar

(2) Double power supply only for LES

2 GENERAL NOTES

LIQZH-LEB, LES servoproportional cartridges are **CE** marked according to the applicable Directives (e.g. Immunity/Emission EMC Directive and Low Voltage Directive). Installation, wirings and start-up procedures must be performed according to the general prescriptions shown in table F003 and in the installation notes supplied with relevant components.

The electrical signals of the valve (e.g. monitor signals) must not be directly used to activate safety functions, or components, as prescribed by the European standards (Safety requirements of fluid technology systems and components-hydraulics, EN-982).

WARNING

To avoid overheating and possible damage of the electronic driver, the valves must be never energized without hydraulic supply to the pilot stage. In case of prolonged pauses of the valve operation during the machine cycle, it is always advisable to disable the driver (option /Q or /Z)

A safety fuse 2,5 A installed on 24VDC power supply of each valve is always recommended, see also Power supply note at sections 9

WARNING

The loss of the pilot pressure or the sudden interruption of the power supply during the valve operation causes the immediate shut-off of the main poppet.

This could cause pressure surges in the hydraulic system or high decelerations which may lead to machine damages.

3 FIELDBUS - only for LES

Fieldbus allows the direct communication of the proportional valve with machine control unit for digital reference signal, diagnostics and settings of functional parameters. Analog reference signal remain available on the main connector for quick commissioning and maintenance. For detailed information about fieldbus features and specification see tech table **GS510**.

MAIN CHARACTERISTICS - based on mineral oil ISO VG 46 at 50 °C

Assembly position	Any position					
Subplate surface finishing	Roughness index, Ra 0	,4 flatness ratio 0,01/100) (ISO 1101)			
MTTFd values according to EN ISO 13849	75 years, see technical	75 years, see technical table P007				
Ambient temperature range	standard = -20° C $\div +60^{\circ}$ C /BT option = -40° C $\div +60^{\circ}$ C					
Storage temperature range	standard = -20°C ÷ +7	'0°C /BT option =	-40°C ÷ +70°C			
Coil resistance R at 20°C	3 ÷ 3,3 Ω					
Max. solenoid current	2,6 A					
Max. power	50 Watt					
Insulation class	H (180°) Due to the occuring surface temperatures of the solenoid coils, the European standards ISO 13732-1 and EN982 must be taken into account					
Protection degree to DIN EN60529	IP66/67 with mating cor	nnector				
Tropicalization	Tropical coating on ele-	ctronics PCB				
Duty factor	Continuous rating (ED=	:100%)				
EMC, climate and mechanical load	See technical table G00	04				
Communication interface	USB Atos ASCII coding CANopen EN50325-4 + DS408 PROFIBUS DP EtherNet/IP IEC 61158					
Communication physical layer	not insulated USB 2.0 + USB OTG	optical insulated CAN ISO11898	optical insulated RS485	Fast Ethernet, insulated 100 Base TX		

Size		32	40	50	63	80	100
Max regulated flo	ow [l/min]						
	at $\Delta p = 5$ bar	800	1200	2000	3000	4500	7200
∆р А-В	at $\Delta p = 10$ bar	1100	1700	2800	4250	6350	10200
Max permissible	flow	1800	2500	4000	6000	10000	16000
Max pressure [b	par]		Ports	A, B = 420	X = 350 Y	[′] ≤ 10	
Nominal flow of pil	ot valve at Δp = 70 bar [I/min]	20	40	40	100	100	100
Leakage of pilot v	/alve at P = 100 bar [I/min]	0,3	0,7	0,7	1	1	1
Piloting pressure	[bar]	min: 40% of system pressure max 350 recommended 140 ÷ 160					
Piloting volume	[cm³]	3,31	5,34	7,42	10,28	19,55	22,53
Piloting flow (1)	[l/min]	13,2	17,8	22,3	31	39	45
Response time 0	÷ 100% step signal (2) [ms]	15	18	20	20	30	30
Hysteresis	[% of the max regulation]	≤0,1					
Repeatability	[% of the max regulation]	± 0,1					
Thermal drift		zero point displacement < 1% at ΔT = 40°C					

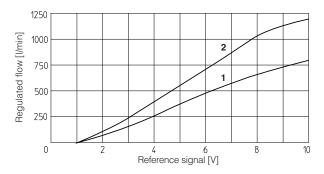
Note

above performance data refer to valves coupled with Atos electronic drivers, see section 6.

(1) with step reference input 0÷100% (2) with pilot pressure = 140 bar, see datailed diagrams in section 7.2

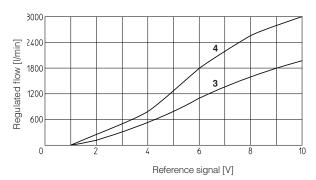
5 SEALS AND HYDRAULIC FLUID - for other fluids not included in below table, consult our technical office

Seals, recommended fluid temperature	NBR seals (standard) = $-20^{\circ}\text{C} \div +60^{\circ}\text{C}$, with HFC hydraulic fluids = $-20^{\circ}\text{C} \div +50^{\circ}\text{C}$ FKM seals (/PE option) = $-20^{\circ}\text{C} \div +80^{\circ}\text{C}$ HNBR seals (/BT option) = $-40^{\circ}\text{C} \div +60^{\circ}\text{C}$, with HFC hydraulic fluids = $-40^{\circ}\text{C} \div +50^{\circ}\text{C}$			
Recommended viscosity	20÷100 mm²/s - max allowed range 15 ÷ 380 mm²/s			
Fluid contamination class	ISO 4406 class 20/18/15 NAS 1638 class 9, in line filters of 10 μm (β10 ≥75 recommended)			
Hydraulic fluid	Suitable seals type	Suitable seals type Classification		
Mineral oils	NBR, FKM, HNBR HL, HLP, HLPD, HVLP, HVLPD		DIN 51524	
Flame resistant without water	FKM	ISO 12922		
Flame resistant with water	NBR, HNBR	HFC	150 12922	

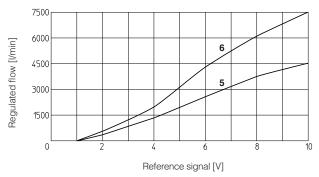

6 ELECTRONIC DRIVERS

Valve model	LEB	LES		
Drivers model	E-RI-LEB-N	E-RI-LES-N		
Туре	Digital			
Format	Integral to valve			
Data sheet	GS208	GS210		

Note: for main and communication connector see sections 12, 13

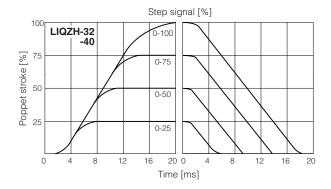

7 DIAGRAMS (based on mineral oil ISO VG 46 at 50 °C)

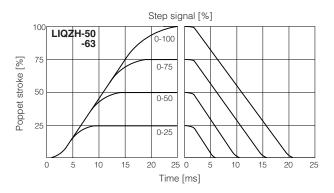
7.1 Regulation diagrams (values measured at Δp 5 bar)

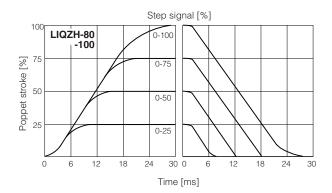


1 = LIQZH-L*-32*

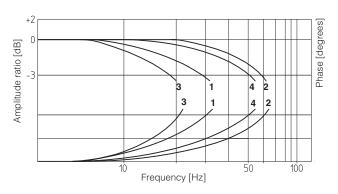
 $2 = LIQZH-L^*-40^*$

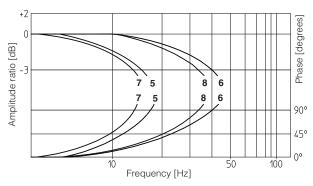

3 = LIQZH-L*-50* **4** = LIQZH-L*-63*



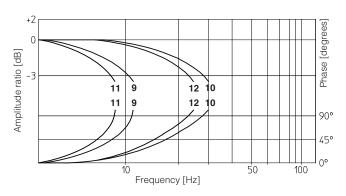

5 = LIQZH-L*-80* **6** = LIQZH-L*-100*

7.2 Response time


The response times in below diagrams are measured at different steps of the reference input signal. They have to be considered as average values. For the valves with digital electronics the dynamics performances can be optimized by setting the internal software parameters.

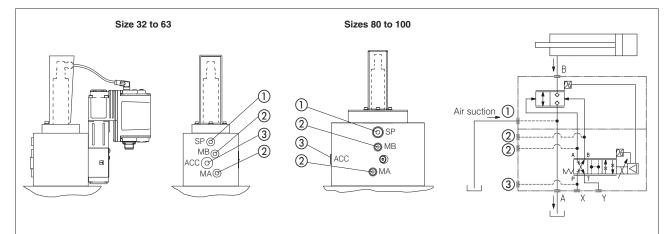


7.3 Bode diagrams - stated at nominal hydraulic conditions


1 = LIQZH-L*-32*: 10% \leftrightarrow 90% **3** = LIQZH-L*-40*: 10% \leftrightarrow 90%

2 = LIQZH-L*-32*: 50% ± 5% $4 = LIQZH-L^*-40^*: 50\% \pm 5\%$

5 = LIQZH-L*-50*: 10% \leftrightarrow 90% **7** = LIQZH-L*-63*: 10% \leftrightarrow 90%


6 = LIQZH-L*-50*: 50% ± 5% **8** = LIQZH-L*-63*: 50% ± 5%

9 = LIQZH-L*-80*: 10% \leftrightarrow 90% **11** = LIQZH-L*-100*: 10% \leftrightarrow 90%

10 = LIQZH-L*-80*: 50% \pm 5% **12** = LIQZH-L*-100*: 50% \pm 5%

8 AIR BLEEDING

- ① To be used only in case port A is connected to tank and subjected to negative pressure, consult our technical office.
- ② At the machine commissioning it is advisable to bleed the air from piloting chambers, by loosening the 2 plugs shown in the picture.

Operate the valve for few seconds at low pressure and then lock the plugs.

3 Additional external pilot port connection.

Port	LIQZH Size						
FOIL	32	40	50	63	80	100	
(1)	G1	/4"		G1	/2"		
Air suction	CH 6		CH 10				
(2)	G1/4"						
Air bleeding	CH 6						
(3)	G1/2"						
External pilot	€CH 10						

9 ELECTRONIC OPTIONS

Standard driver execution provides on the 7 pin main connector:

Power supply

- 24 VDC must be appropriately stabilized or rectified and filtered; **2,5 A** fuse time lag is required in series to each driver power supply. Apply at least a 10000 μ F/40 V capacitance to single phase rectifiers or a 4700 μ F/40 V capacitance to three phase rectifiers

Reference input signal - analog differential input with ±10 VDC nominal range (pin D, E), proportional to desired valve poppet position

Monitor output signal - analog output signal proportional to the actual valve's poppet position with ±10VDC nominal range

Note: a minimum booting time between 400 and 800 ms has be considered from the driver energizing with the 24 Vpc power supply before the valve has been ready to operate. During this time the current to the valve coils is switched to zero.

9.1 Option /F

It provides a Fault output signal in place of the Monitor output signal, to indicate fault conditions of the driver (cable interruption of poppet transducers or reference signal - for /I option): Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC

9.2 Option /I

It provides 4 ÷ 20 mA current reference and monitor signals, instead of the standard 0 ÷ +10 V.

Input signal can be reconfigured via software selecting between voltage and current, within a maximum range of ±10 V or ±20 mA.

It is normally used in case of long distance between the machine control unit and the valve or where the reference signal can be affected by electrical noise; the valve functioning is disabled in case of reference signal cable breakage.

9.3 Option /Q

To enable the driver, supply 24 VDC on pin C referred to pin B: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to maintain active the communication and the other driver functions when the valve has to be disabled. This condition does not comply with European Norms EN13849-1 (ex EN954-1).

9.4 Option /Z

It provides, on the 12 pin main connector, the following additional features:

Enable Input Signal

To enable the driver, supply 24 Vpc on pin 3 referred to pin 2: Enable input signal allows to enable/disable the current supply to the solenoid, without removing the electrical power supply to the driver; it is used to maintain active the communication and the other driver functions when the valve has to be disabled. This condition does not comply with European Norms EN13849-1 (ex EN954-1).

Fault Output Signal

Fault output signal indicates fault conditions of the driver (solenoid short circuits/not connected, reference signal cable broken for 4÷20mA input, etc.). Fault presence corresponds to 0 VDC, normal working corresponds to 24 VDC (pin 11 referred to pin 2): Fault status is not affected by the Enable input signal

Power supply for driver's logics and communication - only for LES

Separate power supply (pin 9,10) allow to cut solenoid power supply (pin 1,2) while maintaining active diagnostics, USB and fieldbus communication. A safety fuse is required in series to each driver power supply: 500 mA fast fuse.

9.5 Possible combined options

/FI, /IQ and /IZ

10 ELECTRONIC CONNECTIONS AND LEDS

10.1 Main connector signals - 7 pin - standard, /F and /Q options (A1)

PIN	Standard	/Q	/F	TECHNICAL SPECIFICATIONS	NOTES
Α	V+			Power supply 24 VDC Rectified and filtered: VRMS = 20 ÷ 32 VMAX (ripple max 10 % VPP)	Input - power supply
В	V0	V0		Power supply 0 Vpc	Gnd - power supply
С	AGND	AGND AGND		Analog ground	Gnd - analog signal
	ENABLE			Enable (24 Vpc) or disable (0 Vpc) the valve, referred to V0	Input - on/off signal
D	Q_INPUT+			Flow reference input signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
D				Defaults are 0 ÷ +10 V for standard and 4 ÷ 20 mA for /I option	Software selectable
Е	INPUT-			Negative reference input signal for Q_INPUT+	Input - analog signal
	Q_MONITOR	referred to:		Flow monitor output signal: ±10 VDC / ±20 mA maximum range	Output - analog signal
F	AGND V0			Defaults are 0 ÷ +10 V for standard and 4 ÷ 20 mA for /I option	Software selectable
	FAULT		FAULT	Fault (0 VDC) or normal working (24 VDC)	Output - on/off signal
G	EARTH		•	Internally connected to the driver housing	

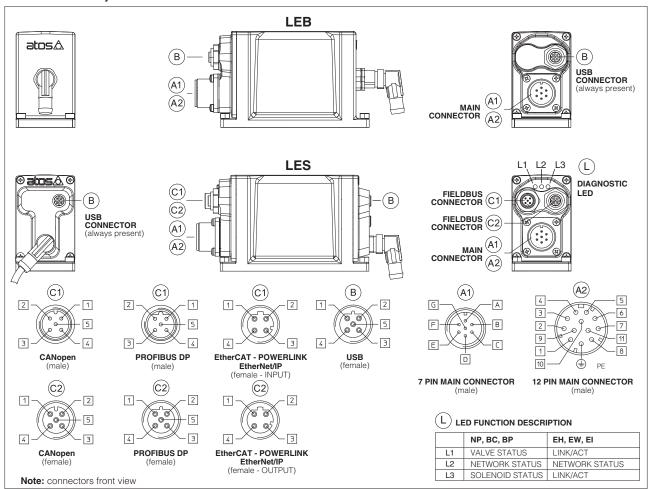
10.2 Main connector signal - 12 pin - /Z option (A2)

PIN	LEB-SN /Z	LES-SN /Z	TECHNICAL SPECIFICATIONS	NOTES
1	V+		Power supply 24 Vpc Rectified and filtered: VRMs = 20 ÷ 32 VMAX (ripple max 10 % VPP)	Input - power supply
2	V0		Power supply 0 Vpc	Gnd - power supply
3	ENABLE refe V0	erred to: VL0	Enable (24 Vpc) or disable (0 Vpc) the valve	Input - on/off signal
4	Q INPUT+		Flow reference input signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
4	Q_INPUT+		Defaults are 0 ÷ +10 V for standard and 4 ÷ 20 mA for /l option	Software selectable
5	INPUT-		Negative reference input signal for Q_INPUT+	Input - analog signal
6	Q_MONITOR referred to:		Flow monitor output signal: ±10 Vpc / ±20 mA maximum range	Input - analog signal
0	AGND VL0		Defaults are 0 ÷ +10 V for standard and 4 ÷ 20 mA for /I option	Software selectable
7	AGND		Analog ground	Output - analog signal
/	NC		Do not connect	Gnd - analog signal
8	R_ENABLE		Repeat enable, output repeter signal of enable input, referred to V0	
0		NC	Do not connect	Output - on/off signal
9	NC		Do not connect	
9		VL+	Power supply 24 Vpc for driver's logic and communication	Input - power supply
10	NC		Do not connect	
10		VL0	Power supply 0 Vpc for driver's logic and communication	Gnd - power supply
11	1 FAULT referred to: V0 VL0		Fault (0 Vpc) or normal working (24 Vpc)	Output - on/off signal
PE	EARTH		Internally connected to the driver housing	

Note: do not disconnect VL0 before VL+ when the driver is connected to PC USB port

	B USB connector - M12 - 5 pin always present					
PIN	SIGNAL	TECHNICAL SPECIFICATION (1)				
1	+5V_USB	Supply for external USB Flash Drive				
2	ID USB Flash Drive identification					
3	3 GND_USB Signal zero data line					
4	D-	Data line -				
5	D+	Data line +				

©1 ((3) (2) BP fieldbus execution, connector - M12 - 5 pin					
PIN	PIN SIGNAL TECHNICAL SPECIFICATION (1)					
1	+5V	Termination supply signal				
2	LINE-A	Bus line (high)				
3	DGND	Data line and termination signal zero				
4	LINE-B	Bus line (low)				
5	SHIELD					


Notes: (1) shield connection on connector's housing is recommended

	©1 ©2 BC fieldbus execution, connector - M12 - 5 pin					
	PIN	SIGNAL	TECHNICAL SPECIFICATION (1)			
	1 CAN_SHLD Shield					
Γ	2	not used	©1- ©2 pass-through connection (2)			
	3	CAN_GND	Signal zero data line			
Γ	4	CAN_H	Bus line (high)			
	5	CAN_L	Bus line (low)			


(c1) (c	© EH, EW, EI fieldbus execution,connector - M12 - 4 pin					
PIN	PIN SIGNAL TECHNICAL SPECIFICATION (1)					
1	TX+	Transmitter				
2	RX+	Receiver				
3	TX-	Transmitter				
4	RX-	Receiver				
Housing	SHIELD					

(2): pin 2 can be fed with external +5V supply of CAN interface

10.5 Connections layout

11 CONNECTORS

12 MODEL CODES OF MAIN CONNECTORS AND COMMUNICATION CONNECTORS - to be ordered separately

VALVE VERSION	LEB LES	LEB /Z LES /Z	BC - CANopen	BP - PROFIBUS DP	EH - EtherCat EW - POWERLINK EI - EtherNet/IP
CONNECTOR CODE	ZM-7P (A1)	ZM-12P (A2)	ZM-5PF C1	ZM-5PF/BP ©1	ZM-4PM/E ©1
CONNECTOR CODE	ZH-7P (A3)	ZH-12P (A4)	ZM-5PM ©2	ZM-5PM/BP ©2	ZM-4PM/E ©2
PROTECTION DEGREE			IP67		
DATA SHEET			GS208, GS210, K500		

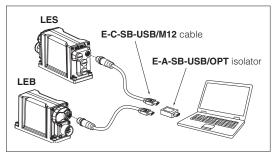
only for **LES**

13 PROGRAMMING TOOLS - see table GS500

Valve's functional parameters and configurations, can be easily set and optimized using Atos E-SW programming software connected via USB port to the digital driver. For fieldbus versions, the software permits valve's parameterization through USB port also if the driver is connected to the central machine unit via fieldbus.

The software is available in different versions according to the driver's options:

E-SW-BASIC support: NP (USB) PS (Serial) IR (Infrared) **E-SW-FIELDBUS** support: BC (CANopen) BP (PROFIBUS DP) EH (EtherCAT)

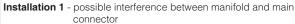

EW (POWERLINK) EI (EtherNet/IP)

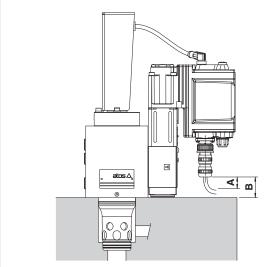
E-SW-*/PQ support: valves with SP, SF, SL alternated control (e.g. E-SW-BASIC/PQ)

WARNING: drivers USB port is not isolated!

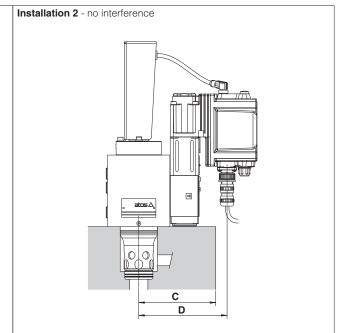
The use of isolator adapter is highly recommended for PC protection (see table GS500)

USB connection


14 FASTENING BOLTS and VALVE MASS

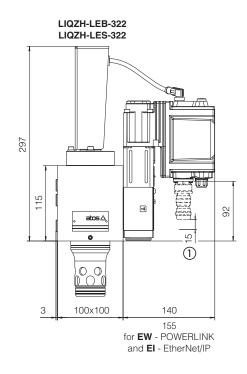

Size	Fastening bolts class 12.9 (1)	Tightening torque	Mass (Kg)		
32	N°4 M16x60	300 Nm	12,0		
40	N°4 M20x70	600 Nm	17,6		
50	N°4 M20x80	600 Nm	25,6		

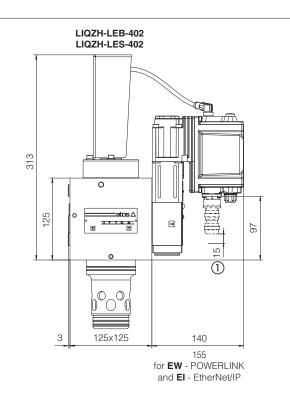
1	4١	Fastening	holto	gunnlind	with	tho	volvo
(1)	Fastening	DOILS	supplied	with	tne	vaive

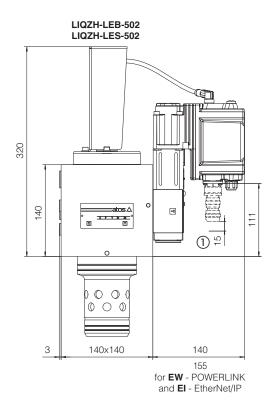

Size	Fastening bolts class 12.9 (1)	Tightening torque	Mass (Kg)	
63	N°4 M30x120	2100 Nm	46,5	
80	N°8 M24x80	1000 Nm	74,6	
100	N°8 M30x120	2100 Nm	128	

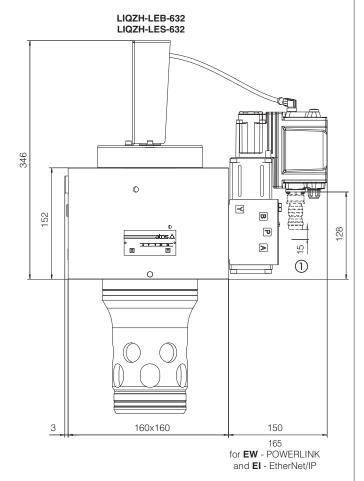
15 MAIN CONNECTORS INSTALLATION DIMENSIONS

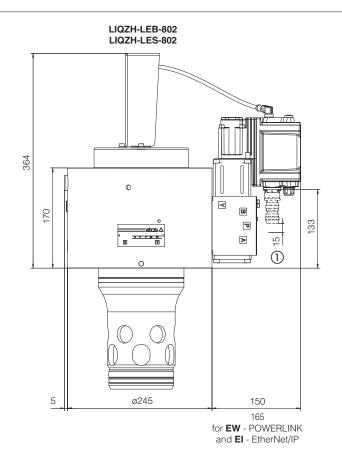
- A = 15 mm space to remove the 7 or 12 pin main connectors
- **B** = Clearance between main connector to valve's mounting surface. See the below table to verify eventual interferences, depending to the valve size and connector type

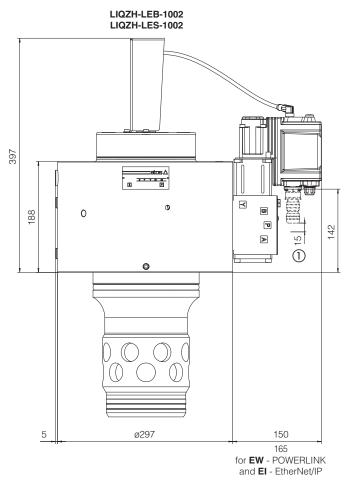

C = Max manifold dimension to avoid interference with the main connector, see below table


Reference	Main connector code	Valve size					
dimension		32	40	50	63	80	100
	ZM-7P	32	32	45	68	68	80
В	ZH-7P	Note 1	Note 1	29	52	52	64
ь	ZM-12P	Note 1	Note 1	Note 1	35	35	47
	ZH-12P	Note 1	Note 1	Note 1	Note 1	Note 2	40
C (max)	-	121	134	141	172	202	229
D	-	141	154	161	192	222	249


Above dimenions refer to the main connector fully screwed to driver's connector. The space A = 15 mm to remove the connector must be considered Note 1: the connector installation can be performed only if the valve's driver protrudes from the edge of the relevant mounting manifold as rapresented in above "Installation 2"


Note 2: the connector installation may be critic, depending to the cable size and bending radius





(1) Space to remove the 7 or 12 pin main connector. For main and communication connectors see section [11], [12]

Note: for mounting surface and cavity dimensions, see table P006

① Space to remove the 7 or 12 pin main connector. For main and communication connectors see section 11, 12

Note: for mounting surface and cavity dimensions, see table P006

