PTH PRESSURE TRANSMITTERS p nom 40 - 100 - 250 - 400 bar #### **DESCRIPTION** This series of pressure transmitters has been designed in order to be used for the main industrial applications and on moving machines. The main feature of this transmitter is to ensure its functioning also in harsh environements, especially for what concerns the fluid temperature range which can go from a minimum of - 40 °C up to a maximum of + 120 °C The basis of this transmitter is the strain-gauge, which is powered by an electric circuit developed according to the SMT technology which ensures a high reliability and maximum resistance to vibrations and mechanical stress. Every component into contact with the fluid is made of stainless steel and the pressure sensor is completely fluid-proof. It's available with current output signal $4 \div 20$ mA or with voltage output signal $0 \div 10$ V. Versions also available upon request are $0 \div 5$ V and $0.5 \div 4.5$ V, ratiometric. They all are reverse polarity protected. The protection class of the electrical connection for the version with DIN connector is IP65, while the version with the M12 connector has a protection class IP67. These transmitters are available in 4 different pressure ranges, from 40 to 400 bar. # **TECHNICAL SPECIFICATIONS** | Nominal pressure P _N | bar | 40 | 100 | 250 | 400 | |-------------------------------------|------------------|-----|-----|-----|-------| | Overpressure - max working pressure | x P _N | x 3 | x 3 | x 3 | x 2.5 | | Burst pressure | x P _N | x 7 | x 5 | x 4 | x 5 | | Accuracy typical at 25 °C | % P _N | ± 0,5 | |---|------------------|--| | Output signal : current voltage | mA
V | 4 ÷ 20
0 ÷ 10, 0 ÷ 5, 0.5 ÷ 4.5 | | Sensor temperature range: | °C | -40 / +120 | | Ambient and fluid temperature range: sealing in FPM (standard) NBR EPDM | °C | -20 / +120
-25 / +100
-40 / +125 | | Rise time (10%90% of P _N) | ms | 1 | | Hydraulic connection | | 1/4" BSP with seal | | Housing and pressure connection | | AISI 304 | | Mass | g | 50 | # HYDRAULIC SYMBOL PTH #### 1 - IDENTIFICATION CODE # 2 - OVERALL AND MOUNTING DIMENSIONS PTH # 3 - TECHNICAL CHARACTERISTICS #### **Electrical data** | | | E0 | E1 | E2 | E5 | |-------------------------|------|--------------|--------------|-------------|----------------------------| | Output signal | | 0 ÷ 10 V | 4 ÷ 20 mA | 0 ÷ 5 V | 0.5 ÷ 4.5 V
ratiometric | | Supply voltage | V CC | 24 (15 ÷ 32) | 24 (9 ÷ 32) | 24 (9 ÷ 32) | 5 (4.75 ÷ 5.25) | | Max current consumption | mA | ≤ 15 | - | ≤ 20 | ≤ 10 | | Load resistance | kΩ | ≥ 5.0 | see par. 4.2 | ≥ 5.0 | ≥ 5.0 | # Accuracy | Accuracy (typical at 25 °C) | % P _N | ± 0.5 | |---|------------------|--------| | TEB Total error band (-25+85 °C) | % P _N | ± 1.75 | | NLH Non linearity and hysteresis (at 25 °C) | % P _N | ± 0.2 | | TC Temperature coefficient | % P _N | ± 0.03 | | Stability after 1 million cycles | % P _N | ± 0.2 | #### **Environmental conditions** | Electromagnetic compatibility (EMC): according to 2014/30/EU | | Immunity 61000-6-2
Emissions 61000-6-4 | | |--|------------|---|--| | Vibrations | | 50 G / 11 ms | | | Class protection according to EN 60529 with connector proprerly installed. | K10
K12 | IP65
IP67 | | # 4 - TRANSMITTERS SUPPLY # 4.1 - Versions in voltage (E0, E2, E5 ratiometric) These transmitters are equipped with voltage stabilizer which supplies the electric circuit with constant voltage, independently from power supply voltage. We recommend a stabilized power supply voltage, within proper ranges as in table at par. $\bf 3$. # 4.2 - Version in current 4 ÷ 20 mA (E1) The transmitter works properly within an operating area (see diagram) that depends on both the voltage supply value and the external load resistance used to convert the signal. Is recommended to choose values close to the limit Rmax, in order to have a wide signal easier to read. We suggest supply voltage of 24 VDC and a load resistance of 700 Ohm # min./max resistor vs. supply voltage E1 version with Pmax = 100% PTH #### 5 - ELECTRIC CONNECTIONS K10 Connection DIN 43650 reduced 3 pin + GND **WARNING!** Check that the connection cables are suitable for the temperature range intended for use of the device. K12 Connection M12x1 4 pin # 6 - WIRING DIAGRAMS - K10 CONNECTION | voltage output - 3 wires + GND | Version | | | |---|---------|-------|-----------| | | E0 | E2 | E5 | | shield | | | | | \cup | 24 V | 24 V | 5 V | | Output ——2 | 0÷10 V | 0÷5 V | 0.5÷4.5 V | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 0 V | 0 V | 0 V | | ⊕ GND — 4 | GND | GND | GND | | current output - 2 wires + GND | Vers. | |---------------------------------------|------------------| | | E1 | | shield U _S — (Supply) — 2 | 24 V | | U _S — (Output signal) 1 | 4 ÷ 20 mA
GND | WARNING! The pin assignment for the transducer PTH - */30*-E0K10 (DIN 43650 connection) differs from that of the previous series! # 7 - WIRING DIAGRAMS - K12 CONNECTION | voltage output - 3 wires + GND | Version | | | |--|---------|-------|-----------| | | E0 | E2 | E5 | | shield | | | | | $+$ \cup_s $-$ (Supply) 1 | 24 V | 24 V | 5 V | | Output2 | 0÷10 V | 0÷5 V | 0.5÷4.5 V | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 0 V | 0 V | 0 V | | ⊕ GND — 4 | GND | GND | GND | WARNING! The pin assignment for the transducer PTH - */31*-E*K12 (M12 - 4 pin connection) differs from that of the previous series!